RESEARCH INTERESTS CONTACT

Design principles of biological circuits
Cells are constantly "making decisions" - monitoring their environment, modulating their metabolism and 'deciding' whether to divide, differentiate or die. For this, they use biochemical circuits composed of interacting genes and proteins. Advances over the past decades have mapped many of these circuits. Still, can we infer the underlying logic from the detailed circuit structure? Can we deduce the selection forces that shaped these circuits during evolution? What are the principles that govern the design and function of these circuits and how similar or different are they from principles that guide the design of man-made machines? The interplay between variability and robustness is a hallmark of biological computation: Biological systems are inherently noisy, yet control their behavior precisely. Research projects in our lab quantify biological variability and identify its genetic origins, examine how variability is buffered by molecular circuits and investigate whether variability can in fact be employed to improve cellular computation. We encourage a multi-disciplinary approach, combining wet-lab experiments, dynamic-system theory and computational data analysis. This is achieved through fruitful interactions between students with backgrounds in physics, biology, computer science, mathematics and chemistry.


Email:
naama.barkai@weizmann.ac.il

Phone:
+972-8-934-4429
Fax:
+972-8-934-4108

Address:
Meyer bulding 404
Weizmann Institute of Science
Rehovot 76100
Israel.

FEATURED ARTICLE
Principles of cellular resource allocation revealed by condition-dependent proteome profiling
Eyal Metzl-Raz*, Moshe Kafri*, Gilad Yaakov*, Ilya Soifer, Yonat Gurvich, Naama Barkai
eLife (2017)

Growing cells coordinate protein translation with metabolic rates. Central to this coordination is ribosome production. Ribosomes drive cell growth, but translation of ribosomal proteins competes with production of non-ribosomal proteins. Theory shows that cell growth is maximized when all expressed ribosomes are constantly translating. To examine whether budding yeast function at this limit of full ribosomal usage, we profiled the proteomes of cells growing in different environments. We find that cells produce excess ribosomal proteins, amounting to a constant ?8% of the proteome. Accordingly, ?25% of ribosomal proteins expressed in rapidly growing cells does not contribute to translation. Further, this fraction increases as growth rate decreases and these excess ribosomal proteins are employed when translation demands unexpectedly increase. We suggest that steadily growing cells prepare for conditions that demand increased translation by producing excess ribosomes, at the expense of lower steady-state growth rate.. ....Read more...


Departments of Molecular Genetics and Physics of Complex Systems